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Abstract

Aircraft with internal carriage of weapons or surveillance systems re-

quire active control strategies to limit high amplitude open bay acoustic

resonances and to facilitate optimization of structure requirements and

weapon/surveillance reliability. This paper focuses on communicating an

investigation of the use of numerical simulation combined with Proper

Orthogonal Decomposition (POD) model reduction methods to optimize

an active control system for aircraft open cavity applications. Issues ad-

dressed include characterizing shear layer and wake resonant responses,

optimal steady blowing rates, the e�ect of open loop harmonic perturba-

tions, use of POD for post-processing data to reduce storage requirements,

and the use of the Nelder-Mead optimization procedure. Comparison of

the wake and shear layer responses reveals why a wake response in air-

craft is undesirable. This study has focused primarily on a freestream �ow

at M=0.85 with a cavity of aspect ratio l=d = 4:5. The results include

the use of steady blowing injection up to M = 0.9 and harmonic forcing

perturbations ranging in amplitude from M=0.005 to M=0.45. In the pa-

rameter space examined, �uid displacement had the largest e�ect. The

best observed forcing reduced the bu�et loading metrics by approximately

17 db.

1 Introduction

When �uid at high speed �ows over an open cavity, large acoustic pressure �elds
inside the cavity are generated by �uid/structure interactions at the downstream
end of the cavity. In the case of an airplane, acoustic waves are created in wheel-
wells during takeo� and landing, and in weapon and/or surveillance bays during
�ight. Pressure �uctuations can potentially be high enough to damage stored
instrumentation or structures (see for instance [15]). This increases the im-
portance of attenuating the pressure �eld created within the cavity. In order to
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succeed in systematic noise reduction, it is necessary to employ a computational
model that captures the essential features of the physical process.

A number of authors have studied the physical mechanism that includes
the acoustic waves along with di�erent means to control it. These e�orts have
involved a variety of cavity shapes and Mach numbers. It is now known that this
physical mechanism results in di�erent characteristics depending on the ratio
length/depth (l=d) of the cavity. In this regard, a cavity is usually classi�ed
as shallow or deep depending on whether its ratio l=d is greater or less than 2,
respectively. In our considerations here (a cavity with l = 18 in, d = 4 in) we
investigated a shallow cavity.

As described in [14], experiments by Rossiter led to a semi-empirical for-
mula to determine the Strouhal number S, a nondimensional cavity resonance
frequency

S =
fml

U
=

m� �

M + 1=k
; (1)

where M is the mach number, fm is the frequency, m is the frequency mode
number, k = 0:57 (a constant related to the disturbance convection speed),
U is the freestream velocity, and � is an empirical constant that takes into
account the phase di�erence between the upstream arrival of the acoustic wave
and the subsequent shedding of a vortex. The fm's are the Rossiter frequencies,
which correspond to the shear layer (natural Rossiter) mode oscillations. It is
important to note that Rossiter's formula assumes the speed of sound inside the
cavity to be identical to the speed of sound in the freestream. Therefore, Heller
et al. [14] proposed a slight modi�cation to Rossiter's formula that considers the
sound speed in the cavity to be nearly equal to the stagnation speed of sound

fml

U
=

m� �

(M=f1 + [( � 1)=2]M2g1=2) + 1=k
; (2)

where  is the ratio of speci�c heats. They found that the estimated error for
the predicted values of fm is �10% for cavities with l=d � 4 and greater for
cavities with l=d < 4. This model has been experimentally studied and for
certain regimes veri�ed in [15], [28], [25], and [26].

In [15], H. H. Heller and D. B. Bliss considered a shallow cavity for anal-
ysis and experiments. They described the �uid/cavity interaction as a six
step feedback loop where instabilities of the shear layer caused a mass addi-
tion/removal process at the cavity downstream end. They predicted the mode
shapes and amplitudes and implement suppression techniques to reduce them.
In [7], Cain, Bower, McCotter, and Romer considered the cases of supersonic
and sub-sonic/transonic �ow and gave a classi�cation of the �ow type along
with the corresponding pressure mode shapes for each case. They focused on
the case of an �open cavity �ow� consisting of cavities satisfying the condition
l=d < 10, and described the problem as a four-step process where each step was
modeled and used to develop a code for modeling. In [26], Rockwell and Naus-
dacher considered three di�erent perspectives on what originates and sustains
the oscillations in the cavity. They discussed the physics characteristics and
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Figure 1: Two dimensional open shallow cavity.

mathematical models for the frequencies and amplitudes in each case. In their
paper they presented an extensive summary and comparison of e�orts prior to
1978 in terms of analysis, attenuation means, and experimental results.

Here we present computational results for the �uid/structure interactions
from a �ow over a two-dimensional shallow cavity as depicted in Figure 1 with
2 < l=d < 10. In this case the �uid-induced oscillation process begins when a
boundary layer separates at the upstream end of the cavity, creating an unstable
wave. This wave propagates and ampli�es downstream across the top of the
cavity, where it interacts with the structure, generating an acoustic �eld. The
acoustic wave then propagates back upstream inside the cavity until it reaches
the upstream end, feeding the disturbances in the shear layer (see e.g., [7],[15],
[26]). In most of the e�orts to date, the authors consider a linear model along
with semi-empirical formula that predicts modal frequencies (see [7], [15], [26],
[28]).

Within an open cavity on an aircraft, sonic resonances in excess of 180 db are
possible. Clearly it is desirable to attenuate these waves so as to prevent dam-
age to the aircraft and its payload. Three-dimensional numerical simulations of
this phenomena, while more representative of the physics, are computationally
prohibitive for design purposes. Fortunately, a two-dimensional simulation does
contain su�cient information to yield insight into the physics and is feasible
with current computational capabilities. However, to gain the necessary res-
olution for simulating the high Reynolds number cavity acoustics, we needed
to use an approximately 36,000 point grid and run the simulation for approxi-
mately 20,000 timesteps to stabilize the �ow. After stabilization an additional
4,500 timesteps were needed for the POD calculation described below(a typical
timestep is 4� 10�6 seconds). Unfortunately, each solution snapshot (in time)
requires approximately 1.4 megabytes of memory, thus incurring large storage
requirements for each simulation run. Therefore, while studying this cavity
acoustic phenomena, it became necessary to �nd a more frugal way to represent
the simulation data. This motivated our use of Proper Orthogonal Decomposi-
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tion (POD) reduced order methods in carrying out computations for our control
problem. Following a description of the full scale numerical method in Section
2, the method and the control problem are described in detail in Sections 3 and
4 below. A description of the simulation approach we used is given in the next
section. In concluding this section, we give a few further comments on previous
research in the area of cavity acoustics and control.

In summary, a major advance in research on �ow over an open cavity was re-
alized in the work of Rossiter (1964)[27] who characterized the modal frequency
response for sub-sonic and transonic �ows. Since that time many researchers
have re�ned current understanding of the phenomena. While we do not wish
to give a comprehensive review, the authors wish to acknowledge the bene�t of
some of the previous work on prediction and understanding of cavity dynamics
and control. These include the already mentioned fundamental advances by
Heller and Bliss (1975)[15], frequency and amplitude prediction by Smith and
Shaw (1975) [34], modeling by Tam and Block (1978)[36], fundamentals of shear
layer feedback loops by Rockwell (1982)[25], fundamental shear layer behavior
by Ho and Huerre (1984)[16], advances to modern aircraft application and con-
trol by Shaw (1982, 1998)[29][30], challenges to resonant control of experiments
by Gharib (1987)[13], issues on nonlinearity by Keefe (1991)[18], challenges in
simulation of resonant control Fuglsang and Cain (1992)[12], the wake/shear
layer mode switching studies of Colonius et al. (1999)[10], turbulence model
advances implemented by Mani and Ota (1999)[20].

Other examples of recent work on cavity acoustics include the papers of
Banks et al. (1999)[3], Cain et al. (1999)[6], Cattafesta et al. (1999)[8], Chokani
and Lamp (1999)[9], Jacob et al. (1999)[17], Raman et al. (1999)[23], Shaw and
Northcraft (1999)[31], Stanek et al. (1999)[35], Arunajatesan et al. (2000)[1],
and Williams et al. (2000)[37].

2 A Computational Control Approach

The basis of our control computations involve numerous simulations with non-
trivial inputs to alter the �ow. We �rst describe the simulation techniques
employed.

2.1 Simulations

Low dissipation, high accuracy schemes with appropriate data densities are
required for e�cient simulations that accurately re�ect the physical behavior
of �ow over an open cavity. We used the computational aerospace �ow code
WIND, developed by the NPARC Alliance (a national consortium led by NASA
and the Air Force whose purpose is to develop and maintain a speci�c computa-
tional �uid dynamics tool) [22]. For our computational investigations, we have
employed third order Runge-Kutta time integration and �fth order spatially re-
�ned simulations while using the full Navier-Stokes equations for compressible
�uids with turbulence. To better understand the simulation results, time series,
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Fourier transforms of time series data, and snapshots of vorticity and pressure
�elds were generated and monitored. The boundary layer turbulence upstream
and downstream of the cavity is modeled by the Spalart-Allmaras model using
wall functions for e�ciency (see Mani and Ota, 1999)[20] and the �ow in the
cavity region is computed as a direct numerical simulation in two dimensions.

The choice of numerical schemes (third order Runge-Kutta and �fth order
upwind biased) for this work is based on the benchmark problem studies given
in Cain and Bower (1995)[5]. In our studies we �rst contrasted shear layer
mode behavior with wake mode behavior. The wake mode occurs for upstream
boundary layers that are very thin relative to the cavity length (see Colonius
et al., 1999)[10]. Attempts to control the wake mode with forcing (as described
below) met with limited success; this result is consistent with the experiments
of Gharib (1987)[13] and the simulations of Fuglsang and Cain (1992)[12], both
of which addressed wake mode response. Therefore, the primary focus of the
investigations reported on below was the shear layer or natural Rossiter mode
response both without forcing and with a search for optimized forcing.

2.2 Grid structure, size, forcing and boundary issues

The cavity we considered was 18 inches long by 4 inches deep. The compu-
tational domain extended 30 inches upstream from the cavity and 52 inches
downstream from the cavity to help maintain �ow quality. Numerical damping
was applied locally near the upstream, downstream, and freestream boundaries
to limit the in�uence of re�ected waves. We used zonei3g (a program used to
generate grids for WIND) to create a 3 zone Cartesian grid of approximately
36,000 grid points as depicted in Figure 2. The grid was constructed to limit
cell to cell size variations. The Reynolds number was reduced from 1839.71 to
613.104 by lowering the freestream pressure by 1=3. This reduction in Reynolds
number means that molecular viscosity dominates the numerical dissipation to
produce a meaningful physical response. The introduction of mean and har-
monic blowing was through a 60 degree angled slot at the upstream corner of
the cavity as depicted in Figure 3. This choice of forcing location avoided the
forcing crossing a zone boundary that might produce non-physical in�uences.

3 Results

3.1 Characteristics of wake and shear layer modes

Figure 4 characterizes the calculated pressure time history for the shear layer and
wake modes. The pressure was recorded as a function of time on the downstream
cavity wall very near the outer corner as depicted in Figure 5. Using the FFT of
the pressure time history, Table 1 allows a comparison between the �rst 8 modes
of oscillation of the numerical simulation with the �rst 8 natural Rossiter modes.
While not perfect, the simulation frequencies for most of the modes are close
to those calculated using (2). Additionally, the percent di�erences are close to
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Figure 2: Two dimensional cavity grid generated by zonei3g on an SGI.

Figure 3: The location of the mean blowing and harmonic blowing slot indicated
at the upstream cavity edge.
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mode Rossiter No Forcing % di�erence

1 176.0 370.8 52.5
2 410.6 492.3 14.6
3 645.2 620.2 4.0
4 879.8 856.7 2.7
5 1114.4 1125.3 1.0
6 1349.1 1355.5 0.5
7 1583.7 1489.8 6.3
8 1818.3 1994.9 8.9

Table 1: Comparison of natural Rossiter frequencies and frequencies calculated
from the pressure time history taken at the downstream wall.

those predicted by [14] for the higher frequencies, thus lending more weight to
the claim that our simulation is a good representation of the dynamics.

It is important to notice that the total pressure variation or bu�et loading
is much greater for the wake mode. Also the average pressure of the wake mode
is much greater, resulting in signi�cantly more drag on an aircraft. Many of the
�gures in this paper focus on an unsteady pressure or �bu�et loading� measure.
This unsteady loading metric is essentially an acoustic source measure. It is
thus anticipated that reducing the bu�et loading metric will amount to bene�cial
acoustic suppression. Figures 6 and 7 illustrate the signi�cantly di�erent vortical
behavior of the shear layer and wake mode responses.

The shear layer mode behavior in Figure 6 is typical and depicts the shear
layer bridging the cavity with modest Kelvin-Helmholtz instabilities creating
harmonic oscillations in the cavity. In contrast to the shear layer mode, the
wake mode response depicted in Figure 7 is characterized by large eruptions of
vortical �uid leaving the cavity, and large regions of freestream �ow impinging on
the downstream wall, creating the high pressure signature. A detailed series of
snapshots of the vorticity contours of the wake mode evolution depicts that the
shear layer begins to roll up just inside the cavity. This original concentration
of vorticity continues to be fed by the upstream boundary layer until it grows
su�ciently large to interact with the downstream wall. This interaction is of
such a nature that the large concentration of vorticity is ultimately ejected
into the freestream. Colonius et al. (1999)[10] performed high-resolution direct
numerical simulations with two-dimensional laminar �ow for Reynolds numbers
of 30-80, based on the shear layer's momentum thickness. They determined that
a criterion predicting wake versus shear layer mode response could be given in
terms of the ratio of the thickness of the oncoming shear layer to the cavity
length. They observed the switch from shear layer mode to wake mode at ratio
of cavity length to momentum thickness of between 50 and 100. In our studies
the momentum thickness Reynolds number of the upstream boundary layer has
been varied between 200 and 600 and the switching between shear layer/wake
modal responses is consistent with that observed by Colonius et al. [10].

7



0 1 2 3 4

x 10
−4

0.4

0.6

0.8

1

1.2

1.4

1.6

P
ca

vi
ty

 / 
P

∞

time (seconds)

Shear Layer Mode
Wake Mode                    

Figure 4: Traces of the time history of pressure on the downstream corner of
the wall over several periods of natural oscillations.

Figure 5: The location from which pressure measurements shown in Figures 4
and 15 were taken.

Figure 6: Vorticity contours in a snapshot of the �fth order spatial simulation
of the shear layer mode behavior.
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Figure 7: Vorticity contours in a snapshot of the �fth order spatial simulation
of the wake mode behavior.

3.2 Forced Cavity Simulations

All simulations reported on here were for a cavity of aspect ratio (l=d) of 4.5 with
a freestream �ow of Mach 0.85. As depicted in Figure 3, a slot at the upstream
edge of the cavity, of cross sectional width less than 1/20 of the cavity depth,
at an angle of 60 degrees to the oncoming freestream �ow, was used to inject
mean blowing and unsteady forcing into the cavity boundary layer. Unsteady
disturbances composed of a time-mean �ow plus a harmonic perturbation of
an amplitude up to the level of the mean blowing were studied. The injected
blowing disturbances had velocity amplitudes and harmonic amplitudes ranging
from Mach 0.005 to 0.9. To assess the e�ect of forcing on cavity instability, the
integral over the solid boundaries of the square of the di�erence between the
time mean pressure and the instantaneous pressure was used to form metrics of
the bu�et loading on the upstream wall, downstream wall, and the cavity �oor
(or ceiling), respectively. More precisely, our metric for the bu�et loading BFL
was de�ned as

BFL =
1

p1

�
1

jT jjDj

Z
t2T

Z
x2D

jp(t; x) � �p(x)j
2
dx dt

� 1

2

; (3)

where the quantities used are given by the following: p(t; x) = pressure at time
t and position x, p1 = freestream pressure, �p(x) = average pressure, T = time
interval of interest, jT j = length of time T , D = domain of interest, and jDj =
length of domain D.

An overview of the cases examined can be observed in Figure 8. The x-axis
in this �gure is the sum of the harmonic and steady blowing amplitudes which
is the maximum forcing amplitude realized in each run. The no forcing case
is identi�ed to provide a reference point for the other cases. These included a
range of frequencies and ratios of harmonic amplitude to mean blowing levels.
Note that use of forcing disturbances less than M = 0.2, for the computational
con�guration examined here, dramatically increases the bu�et loading.
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Figure 8: A simple presentation of the cases examined with bu�et loading ex-
pressed as a function of the sum of mean and harmonic forcing Mach number.

The cluster of cases of low harmonic plus steady blowing in the upper left of
Figure 8 consists solely of cases where the steady blowing was zero. Thus, the
fact that we were not able to reduce the bu�et loading by using small amplitude
harmonic blowing suggests that the e�ective use of open loop control (with small
amplitude disturbances) will be a challenge. The rise in bu�et loading at steady
blowing values higher than M = 0.8 is believed to be due to the e�ect of strong
entrainment �ows that occur at high blowing rates. It is also possible that the
boundary layer is separating from the wall upstream of the cavity, which would
also generate this e�ect. Figures presented below will reveal that modest blowing
gently lifts the shear layer over the downstream cavity corner and softens the
interactions of shear layer vortical instabilities with the corner.

Figure 9 isolates the e�ect of mean blowing level on the bu�et loading level
by �xing the harmonic perturbation level at M=0.25 with a frequency of 361 Hz
(90% of the second Rossiter mode) and then varying the mean blowing rate. It
is readily apparent that there is a �at trough for a mean blowing level ranging
from M=0.3 to M=0.6. It is believed that this level trough is due to the har-
monic forcing in�uence and that the level may come down with lower harmonic
amplitudes. Figure 10 depicts various harmonic forcing levels for 3 mean blow-
ing levels, all with harmonic frequency of 361 Hz. The loading metric decreases
as harmonic levels are decreased until, at small harmonic levels the loading in-
creases as the harmonic forcing goes to zero. Many of the experimental studies
to date have focused on the issue of di�erent forcing frequencies. Our simula-
tions exhibit very important signi�cant di�erences with respect to experiments
and additionally provide some complementary information on open loop forcing
as well. Note that all cases in Figure 11 have harmonic blowing amplitude equal
to the mean blowing level ranging from M=0.005 to M=0.45.

In Figure 11 a substantial range of frequencies of harmonic excitation ex-
hibits limited improvement in the bu�et loading for these combinations of forc-
ing. The relevance of the frequencies examined, is given a context by the indi-
cated �rst two Rossiter frequencies. Figure 12 illustrates the behavior of a given
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Figure 9: Bu�et loading metric as a function of the mean blowing level for a
harmonic forcing level of M=0.25 at a frequency of 90% of the second Rossiter
frequency (361 Hz).
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Figure 10: Behavior of the bu�et loading metric at several harmonic forcing am-
plitudes for mean blowing levels of M=0.3 and M=0.4 and frequency of Figure 9.
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Figure 11: Bu�et loading level at many frequencies with the harmonic forcing
level equal to the mean blowing for Case 1, M= 0.005; Case 2, M=0.01; Case 3,
M=0.02; Case 4, M=0.05; Case 5, M=0.1; and Case 6, M=0.45.
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Figure 12: Bu�et loading metric for several frequencies with harmonic forcing
levels equal to the mean blowing Mach number.

Figure 13: Contours of vorticity for a very weakly forced �ow. The freestream
Mach number is M=0.85. The mean blowing and harmonic forcing amplitudes
are both M=0.01 and the frequency of forcing is 90% of the second Rossiter
frequency (361 Hz). The contours levels are in increments of vorticity jumps of
2000/sec.

harmonic frequency over a range of amplitudes of harmonic forcing and mean
blowing. Note that in all cases in Figure 12, the mean blowing Mach number is
equal to the harmonic perturbation amplitude. It is also important to observe in
Figures 11 and 12, that the minimal bu�et loading is achieved with no blowing,
that is, without any control.

The behavior illustrated in Figures 8 through 12 suggests that open loop har-
monic forcing is somewhat limited in reducing the bu�et loading in these simple
two-dimensional numerical simulations. To gain a better understanding of the
bene�t of the mean blowing we turn to the visualization in Figures 13 and 14.
The conditions for Figure 13 are for an amplitude of harmonic forcing and mean
blowing of Mach 0.01. The results are very similar to those for no forcing except
that the disturbances are regularized instead of random. Figure 14 exhibits a
suboptimal reduced bu�et loading levels relative to the unforced simulations.

This acoustic suppression depicted in Figure 14 was generated by mean blow-
ing at a Mach number of 0.4 with a harmonic forcing frequency of 361 Hz and
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Figure 14: Contours of vorticity for a suboptimal forced �ow. The freestream
Mach number is M=0.85. The mean blowing level is M=0.4 and harmonic
forcing amplitude is M=0.2 and the frequency of forcing is 90% of the second
Rossiter frequency (361 Hz). The contour levels are in increments of vorticity
jumps of 2000/sec.
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Figure 15: Traces of the times history of the pressure on the downstream corner
of the wall.

an amplitude of Mach 0.2. Both of these simulations show the forcing-induced
development of the Kelvin-Helmholtz instability. However, in the highly sup-
pressed case depicted in Figure 14, the mean blowing gently raises the perturbed
shear layer over the downstream corner and the vortical interactions with the
corner are reduced. Another aspect of this e�ect is illustrated by the stronger
gradients of vorticity inside the cavity in Figure 13, indicating strong shear lay-
ers and the presence of more dynamic activity in the cavity. Figure 15 depicts
the pressure time history of a suboptimally forced (Msteady = 0:25 Mach and
Mharmonic = 0:01 Mach) case juxtaposed with the shear layer and wake modes
with no blowing. Based upon the bu�et loading metric, we calculated that this
suboptimal forced case was 17.4 db lower than the shear layer mode without
blowing.

The discussion has suggested signi�cant di�erences between the wake mode
response, the shear layer mode response, and the optimized forcing case. These
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Figure 16: Spectra from the Wake Mode, Rossiter Mode, and Forced
(Msteady = 0:25 Mach, Mharmonic = 0:01 Mach, 361 Hz) cases.

di�erences are further emphasized in the corresponding spectra from the three
cases. Figure 16 shows the power spectra of all three cases based on �uctuating
pressure, normalized by the freestream pressure and determined from a time
series of data taken at the downstream corner as shown in Figure 5. The wake
mode has larger amplitude oscillations and lower frequency content. Both of
these distinguishing features have a detrimental e�ect on operational reliability
and maintenance costs. Clearly, in real designs the wake mode should always
be avoided. The shear layer mode response at this Mach number and geometry
tends to give a 2nd Rossiter mode as the dominant response. For other Mach
numbers and geometries di�erent Rossiter modes may be more important. The
case of optimized forcing shows a dramatic reduction in spectral amplitudes and
only the forcing frequency and its �rst harmonic rise above a quiet background.
As had been speculated earlier, the steady component of forcing has gently lifted
the shear layer above the downstream corner minimizing disturbance interac-
tions with the downstream corner. This reduced interaction lowers the gain of
the feedback loop resulting in the very low amplitude, quiet spectrum.
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4 Proper Orthogonality Decomposition

In the previous section, we used extensive simulations to suggest that optimal
or suboptimal strategies for suppression of acoustic pressure �elds in shear layer
�ows over open cavities may be achieved by an injection of mass (injected �ows)
at appropriate combinations of mean blowing level and harmonic forcing at
certain frequencies. These numerical simulations were made feasible by the use
of a model reduction/data reduction technique which we now describe in some
detail.

To simplify the post processing and storage of the numerical simulation
data we took advantage of the Proper Orthogonal Decomposition (POD) (see
[2], [19] for other successful uses of POD in both open loop and closed loop
control applications to �ow and structural problems). POD is a method for
representing elements in a vector �eld in an L2 optimal sense. While generally it
would be expected that POD methods would be used on vector �elds of vectors,
for demonstration purposes, we simpli�ed our problem by only examining vector
�elds of scalar pressure values. However, for this theoretical development we
consider a generic vector �eld u(t; x) satisfying

u : [0;1)�
! C ;

where 
 is some spatial domain with x 2 
, C is the complex �eld, and 0 � t <
1.

4.1 In�nite Dimensional Theory

The POD representation of u is a linear combination of some set of basis func-
tions f�ig 2 L

2(
)

u(t; x) =
1X
i=1

ai(t)�i(x)

with
ai(t) = (u(t; �); �i(�))L2 (4)

and (�; �)L2 denoting the L2 inner product.
Clearly it would be ideal to �nd normalized basis functions � 2 L2(
) that

solve:
max
k�k=1

< (u; �)2L2 >

where <> denotes the time average given by

< f >=
1

T

Z T

0

f(t) dt :

The POD method was initially developed for use in modeling stochastic pro-
cesses, thus T is assumed to be large enough so that the time average converges
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(See [4] for a review of the use of the POD method in �uid �ow applications).
Since we are primarily concerned with steady state oscillations, we have made
the same assumption.

By a simple expansion, we obtain

< (u; �)2L2 >=

Z



�Z



< u(�; x)u? (�; x0) > �(x0)dx0
�
�?(x)dx ;

where ? denotes the complex conjugate.
We denote the integral inside the parenthesis as Ru(�), where Ru : L2(
)!

L2(
), and note that in maximizing (Ru(�); �)L2 , we will maximize< (u; �)2L2 >.
Now, upon examining the Ru mapping we observe that

(Ru(�);  )L2 = (�;Ru( ))L2 for all�;  2 L2 ;
(Ru(�); �)L2 � 0 for all� 2 L2 ;

and thus Ru is a symmetric, positive semi-de�nite mapping from L2(
) to
L2(
).

Note further that (Ru(�); �)L2 will be maximized when � is the eigenfunction
corresponding to the largest eigenvalue of Ru. Thus the problem of �nding basis
functions consists of solving the following eigenvalue problem

Ru� = �� ; (5)

with jj�jj = 1.
Indeed, it is possible to prove that using the eigenfunctions as the basis is in

some sense �optimal.� Speci�cally, consider any other basis f ig upon which u
is projected

u(t; x) =

1X
i=1

bi(t) i(x)

with
bi(t) = (u(t; �);  i(�))L2 : (6)

As is proved in [4], for all n 2 N,

nX
i=1

< ai a
?
i >=

nX
i=1

�2i �

nX
i=1

< bi b
?
i > ; (7)

where the ai(t) are de�ned in (4) and the bi(t) are de�ned in (6).
Therefore, if we assume momentarily that the vector �eld is a velocity �eld,

we could non-dimensionalize  , giving the ai's units of velocity. Thus we can
perceive

Pn
i=1 < ai a

?
i > as a �velocity squared� term. Normalizing away the

mass implies that this sum of the time averages provides a measure of the energy
term.

Thus, among all possible linear decompositions, this eigenfunction represen-
tation contains the most �kinetic energy� possible, and thus it is referred to as
an optimal basis (in an L2 sense).
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It is crucial to note that the ability to calculate this �kinetic energy� depends
on our assumption that the original vector �eld is a velocity �eld. If we assume
that the vector �eld is a displacement �eld, the sum in (7) can be viewed as a
�potential energy� term. In reality, the vector �eld could be any scalar quantity.
However, viewing the scalars as velocities leads to the insight that (7) is a kinetic
energy-like term, and in practice is referred to as the �kinetic energy� regardless
of the units of the original vector �eld.

4.2 Finite Dimensional Theory

Consider a set of snapshots of the vector �eld discretized in space and time
fu(t1; �x), u(t2; �x), u(t3; �x),: : :,u(tn; �x)g, with �x representing the discretization
in space.

From [24], if follows that for a hermitian operator with eigenvalues �i we
have

1X
i=1

�2i <1 : (8)

Thus, as described above, the �kinetic energy� associated with the hermitian
operator Ru from (5), can be represented by a sum of squares of its eigenvalues
(by (7)). Thus, choosing n large implies that the generated eigenvalues might
represent a majority of the �kinetic energy� of the entire system. If this is true,
then it is also possible that a large percentage of the �kinetic energy� of the
system could be encapsulated within the �rst few modes, i.e., for m small

%KE =

Pm
i=1 �

2
iPn

j=1 �
2
j

:

In practice, we found this to be the case for our system.
We consider (without justi�cation yet) basis elements of the form

�i(�) =

nX
j=1

�cj uj(�) ; (9)

where �c is an n-dimensional vector of scalars. Substituting this form of basis
elements into (5) and expanding, generates the equation

nX
i;j=1

�
(ui; uj)L2 �cj

�
ui = �

nX
i=1

ui �ci :

After some manipulation, we obtain

uT [(ui; uj)L2 ] �c = uT (� �c) ;

and for u non-zero, we again have an eigenvalue problem.
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Note that the eigenvalues of the matrix who's (i; j)th element is [(ui; uj)L2 ]
are eigenvalues of Ru. In (9), we used �c to de�ne the �i's , which are the
eigenfunctions of Ru. By the discussion following (7), these �i's are optimal in
an L2 sense. Therefore, using this linear combination of the snapshots (9) to
create the basis functions does generate an optimal basis.

4.3 POD Application to the Cavity Acoustics Simulations

The POD method is a constructive approach for determining basis elements in
an e�cient manner using N time-dependent snapshots. This section describes
the implementation of POD and it's e�cacy in reducing the storage requirements
for the pressure �eld.

In practice, choosing N large frequently (in the case of so-called coherence
in the snapshot data) yields

NX
i=1

�i �=

1X
i=1

�i <1 :

Since we know from (7) that the sum of the eigenvalues is the �kinetic energy�
of the system, the �nite sum is typically a good approximation of the �total
kinetic energy.�

We chose to take N = 101 (two dominant oscillation cycles) pressure snap-
shots in time: f�p(t1; �x), �p(t2; �x), �p(t3; �x),: : :,�p(t101; �x)g where �x and �p represent
the grid and a 35,739 element vector of pressure values at time ti respectively.
Note that the dimension of �p corresponds to the number of grid points.

WIND stores the data about the �ow�eld in a binary �le adhering to the
NPARC common �ow �eld (c�) speci�cations [22]. Since Matlab was the pro-
gramming language chosen to implement the POD method, a conversion script
was written to change the c� �le into a matlab-readable ASCII text �le.

Once the pressure �eld data was imported into Matlab, treating the pressure
�eld as a vector in R35;739 , we solved the eigenvalue problem

A �c = � �c ;

where A is the (101� 101) matrix whose (i; j)th element is (�p(ti; �x); �p(tj ; �x))L2 .
The sorted and normalized magnitudes of the eigenvalues are plotted in

Figure 17. Clearly, the magnitude of the eigenvalues decrease rapidly, and as
is depicted in Figure 18, the �rst 4 modes contain 99.9999% of the �energy� in
these snapshots. Therefore, we felt that using the �rst 10 modes would be more
than su�cient to capture all the signi�cant information in the system.

Using the coe�cients from the eigenvectors f�cig
101
i=1, we constructed the basis

elements from a linear combination of the snapshots

�i(�) =
101X
j=1

cij uj(�) for i = 1; : : : ; 10 :
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Figure 17: Distribution of normalized amplitudes of POD elements. The wake
mode, shear layer mode, and forced case are the same as the cases in Figure 15.
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Figure 18: Measure of POD convergence based on relative 'energy' of pressure
representation. The wake mode, shear layer mode, and forced case are the same
as the cases in Figure 15.
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Using WIND to run our simulations, each spatially discretized snapshot
requires approximately 2 MB of storage in an ASCII format. Thus to store
N = 100 snapshots would require 200 MB. Projecting onto the �rst 10 POD
basis elements, these elements and the coe�cients for 100 snapshots requires
merely 2 MB of storage. Clearly POD is an extraordinarily valuable tool for
reducing storage requirements when carrying out simulations and control calcu-
lations. We are aware that simply compressing the ASCII data would also save
considerable space and present these results to describe the relative merits of
POD in the absence of other storage saving mechanisms.

In an attempt to reduce RMS pressure metrics (analogous to bu�et loading),
we injected air (at the upstream edge of the cavity) at a variety of frequencies,
steady blowing amplitudes, and unsteady blowing amplitudes as previously de-
scribed in Section 3.2. For each set of forcing parameters we have calculated
an approximation to the metric described above in (3). The �nite dimensional
POD-based version of the metric is

BFL(M;N) =
1

p1

8<
:

1

N jDM j

NX
j=1

MX
i=1

wi jp(tj ; �xi)� �p(�xi)j
2

9=
;

1

2

; (10)

where the wi are the quadrature weights,DM is a speci�c set of points represent-
ing a subdomain of the spatial grid (e.g., the grid points along the downstream
wall of the cavity), and the �xi are the M quadrature points in DM . Note that
in the actual calculation of the metric, the reduced POD representations were
used for the pressure �elds. Since we are more interested in the metrics relative
to one another, we used the simple trapezoid method to approximate the inte-
gral. The metric was calculated for three distinct sub-domains: the downstream
wall, the upstream wall, and the bottom wall (all in the cavity). We found that
each of the three metrics were, in general, directly proportional to one another,
and thus focused our attention on the downstream wall metric. Varying the
frequency did not have as much e�ect upon the bu�et loading metric as varying
the steady and unsteady magnitudes. Therefore, we only optimized over the 2D
parameter space of steady forcing and unsteady forcing Mach numbers. Using
a cubic interpolation over the parameter space, we used Nelder-Mead [21] in an
attempt to minimize the downstream metric over the parameter space, where
the algorithm converged to a local minimum at Msteady = 0:2805 Mach and
Munsteady = 0:0111 Mach. We chose Nelder-Mead because the algorithm does
not require the calculation of gradients and tends to work well when optimizing
over a low dimensional space.

5 Discussion

5.1 Comparing numerical simulations to experimental data

While numerical simulations are of considerable value for sorting out hypothe-
ses, it is essential to realize that there are potentially very signi�cant di�erences
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between the assumptions used in numerical simulations and laboratory or �ight
situations. The �rst major simpli�cation is that of two-dimensional domain cav-
ity simulation. While simulations can be performed which include some aspects
of three-dimensionality, a parametric study in three dimensions was computa-
tionally prohibitive, given our computational resources. Any simulations of the
cavity that include full three-dimensional simulation of the turbulence in the
oncoming boundary layer are also computationally prohibitive.

These computational studies were done in the context of a numerically fo-
cused study in two dimensions without guidance from experiments. Smith
(2000)[34] and Shaw (2000)[32] have both pointed out that cavity simulations
performed in three-dimensions often behave signi�cantly di�erent than two-
dimensional simulations. One experience related to our two-dimensional ap-
proach was that we found that a large number of forcing conditions needed to
be examined before �nding a bene�t of forcing. It is interesting to learn that in
early experimental studies, Shaw (2000)[32] examined many forcing conditions
�nding substantial numbers of cases both with bene�cial results and without
bene�cial results. Thus, in this respect our e�orts to �nd e�ective controls were
commensurate with experimental �ndings.

Our simulations were done without knowledge of the parameter space used
in Shaw's experiments. As a result, the cavity geometry, blowing geometry,
and blowing velocities were quite di�erent in Shaw's experiments than in our
simulations. In an attempt to compare the experimental and simulation results,
a simple engineering forcing parameter is proposed. The parameter is based
on the volumetric in�ow of the forcing stream per unit width, the freestream
velocity and the cavity length. The parameter is � = VinGslot

U1Lcavity

, where Vin is

the vertical component of the blowing velocity, Gslot is the e�ective blowing slot
gap, U1 is the freestream velocity, and Lcavity is the length of the cavity. In
the case of the experimental information used here, the blowing �ow chokes and
the fully expanded blowing velocity was used to compute �. The experimental
values tabulated in Table 2 are those from data provided by Shaw (2000)[32].

Additionally, the fact that the mass �ux weighted parameter (�) range is of
the same order of magnitude for the forcing in the experiments and our com-
putations not only supports the validity of a comparison between the two, but
also the idea that the primary suppression e�ect derives from the displacement
of the shear layer. This is particularly signi�cant since the momentum param-
eter for the forcing is 3-15 times larger for the experiment than it is in our
computations [32]. It is believed that the experiment did not bene�t from forc-
ing in the horizontal injection cases because it essentially amounts to placing
an acoustic source inside the cavity. Recall that the simulations seem to indi-
cate that the harmonic forcing at large amplitudes drives the bu�et metric (see
Figure 9). Finally, while the experimental harmonic forcing velocities are 3-15
times the computational levels, they may not produce the same impact since
the geometries are usually quite di�erent.
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Data Type Mass Flow/ Mach Injection �

Experimental A 0.3 lbs/sec. 0.0012
Experimental A 0.4 lbs/sec. 0.0016
Experimental A 0.5 lbs/sec. 0.0020
Experimental B 0.3 lbs/sec. 0.0012
Experimental B 0.4 lbs/sec. 0.0016
Experimental B 0.5 lbs/sec. 0.0020
Computational Mach 0.2 0.0013
Computational Mach 0.3 0.0020
Computational Mach 0.4 0.0026
Computational Mach 0.5 0.0033
Computational Mach 0.6 0.0040
Computational Mach 0.7 0.0046

Table 2: Table of blowing parameter values.

6 Conclusions

We conclude with a brief summary of our �ndings. First, both the shear
layer and wake mode responses have been demonstrated computationally in
a 2-dimensional setting. Wake modes are very undesirable and understanding
them better will help to insure no aircraft designs in the wake mode regime are
considered.

Steady blowing can successfully reduce bu�eting metrics. Our simulations
suggest that the blowing level has an optimal range. The present computations
and experiments of Shaw seem to be consistent in the level of blowing that has a
bene�cial impact. High blowing levels can create an entrainment induced cavity
disturbance.

To enable comparison between our simulations and experiments of others,
a simple algebraic parameter has been de�ned. This parameter appears to
be useful in relating disparate experiments and computations and providing
guidance for optimal (or suboptimal) open loop control.

In addition to steady blowing, the e�ect of harmonic excitation was exam-
ined. Many initial cases at many frequencies and amplitudes revealed no bene�t
from harmonic excitation. However, eventually we found that small amplitude
harmonic forcing in addition to a mean component of blowing provided a sub-
optimally reduced bu�et metric observed in the present investigation. The most
signi�cant of these resulted in a 17.4 db reduction.

Proper Orthogonal Decomposition methods provide a valuable tool for post
processing. They reduce computation and more importantly reduce storage
requirements. Moreover, the POD methodology can be readily incorporated
into optimization schemes such as Nelder-Mead to accelerate �nding an optimal
solution.
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